Kamis, 02 Agustus 2018

penjernihan air

penjernihan air 

merujuk ke sejumlah proses yang dijalankan demi membuat air dapat diterima untuk penggunaan akhir tertentu. Ini mencakup penggunaan seperti air minum, proses industri, medis dan banyak penggunaan lain. Tujuan semua proses penjernihan air adalah menghilangkan pencemar yang ada dalam air atau mengurangi kadarnya agar air menjadi layak untuk penggunaan akhirnya. Salah satu penggunaan tersebut adalah mengembalikan ke lingkungan alami air yang sudah digunakan tanpa berakibatkan dampak yang buruk atas lingkungan.

Hasil gambar untuk Alat pemurnian Air

Cara Penjernihan Air[sunting | sunting sumber]

Berikut beberapa cara lain untuk mengurangi bahaya pencemaran air baik secara biologis maupun kimiawi:

Penyaringan dan perebusan[sunting | sunting sumber]

Meski tampak bersih, air yang akan diminum harus disaring dan direbus hingga mendidih setidaknya selama 5-10 menit. Hal ini bisa membunuh bakteri, spora, ova, kista dan mensterilkan air. Proses penyaringan ini juga menghilangkan karbon dioksida dan pengendapan kalsium karbonat.

Disinfeksi kimia[sunting | sunting sumber]

Hal ini berguna untuk memurnikan air yang disimpan pada tempat seperti di genangan air, tangki atau air sumur.

Bubuk pemutih[sunting | sunting sumber]

Proses ini merupakan diklorinasi kapur. 2,3 gram bubuk pemutih diperlukan untuk mendisinfeksi 1 meter kubik (1.000 liter) air. Tapi air yang sangat tercemar dan keruh tidak bisa dimurnikan dengan metode ini.

Tablet klorin[sunting | sunting sumber]

Dipasaran, tablet klorin dijual dengan nama tablet halazone. Senyawa ini mungkin cukup mahal tetapi efektif untuk memurnikan air dengan skala kecil.

Filter[sunting | sunting sumber]

Ada beberapa jenis filter air, antara lain filter keramik ‘lilin’ dan UV filter. Bagian utama dari sebuah filter keramik ‘lilin’ ini adalah lilin yang terbuat dari porselin atau tanah infusorial. Permukaannya dilapisi dengan katalis perak sehingga bakteri yang masuk ke dalam akan dibunuh. Metode ini menghilangkan bakteri yang biasanya ditemukan dalam minum air, tetapi tidak efektif dengan virus yang bisa lolos saringan.

https://id.wikipedia.org/wiki/Penjernihan_air

Lapisan Pelindung dan pengilap

Lapisan Pelindung dan pengilap

Hasil gambar untuk lapisan pelindung dan pengkilap
Lapisan pelindung dan pengkilap, terinspirasi dari lapisan pelindung yang terdapat pada daun tumbuhan yang bernama lapisan lilin atau kutikula.



            Kutikula pada daun memiliki kegunaan untuk memperlambat proses penguapan yang terjadi pada daun serta kutikula sendiri memiliki sifat hidrofobik yaitu sifat untuk menolak air, sehingga air yang ada akan susah mengenai daun secara langsung.



            Begitu pula dengan lapisan pelindung dan pengkilap, biasanya lapisan ini digunakan untuk mempertahankan ketajaman warna maupun suatu benda tertentu baik dari air hujan, cahaya matahari, debu, kotoran, bakteri, dan sejenisnya. Apabila suatu benda tidak diberikan lapisan pelindung dan pengkilap, maka dapat dipastikan benda tersebut akan lebih cepat mengalami kerusakan secara alami.

Simak lebih lanjut di Brainly.co.id - https://brainly.co.id/tugas/12956968#readmore

Sensor Cahaya

Sensor Cahaya

Monday, December 15th, 2014 - Komponen Sensor / Transducer
Sensor cahaya adalah komponen elektronika yang dapat memberikan perubahan besaran elektrik pada saat terjadi perubahan intensitas cahaya yang diterima oleh sensor cahayatersebut. Sensor cahaya dalam kehidupan sehari-hari dapat kita temui pada penerima remote televisi dan pada lampu penerangan jalan otomatis.
Sensor Cahaya

Jenis-Jenis Sensor Cahaya

Dilihat dari perubahan output sensor cahaya maka sensor cahaya dapat dibedakan kedalam 2 tipe yaitu :
  • Sensor cahaya tipe fotovoltaik
  • Sensor cahaya tipe fotokonduktif
Kemudian apabila dilihat dari cahaya yang diterima sensor cahaya tersebut, maka sensor cahaya dapat dibagi dalam beberapa tipe sebagai berikut :
  • Sensor cahaya infra merah
  • Sensor cahaya ultraviolet

Sensor Cahaya Tipe Fotovoltaik

Sensor cahaya tipe fotovolataik adalah sensor cahaya yang dapat memberikan perubahan tegangan pada output sensor cahaya tersebut apabila sensor tersebut menerima intensitas cahaya. Salah satu contoh sensor cahaya tipe fotovoltaik adalah solar cell atau sel surya.
Solar Cell
Sensor cahaya tipe photovoltaic adalah alat sensor sinar yang mengubah energi sinar langsung menjadi energi listrik. Sel solar silikon yang modern pada dasarnya adalah sambungan PN dengan lapisan P yang transparan. Jika ada cahaya pada lapisan transparan P akan menyebabkan gerakan elektron antara bagian P dan N, jadi menghasilkan tegangan DC yang kecil sekitar 0,5 volt per sel pada sinar matahari penuh. Berikut konstruksi dari sensor cahaya tipe fotovoltaik.
Konstruksi Solar Cell

Sensor Cahaya Fotokonduktif

Sensor cahaya tipe fotokonduktif akan memberikan perubahan resistansi pada terminal outputnya sesuai dengan perubahan intensitas cahaya yang diterimanya. Sensor cahaya tipe fotovoltaik ini ada beberapa jenis diantaranya adalah :
  • LDR (Light Depending Resistor)
  • Photo Transistor
  • Photo Dioda

LDR (Light Depending Resistor)

Sensor CahayaLDR (Light Depending Resistor)
LDR adalah sensor cahaya yang memiliki 2 terminal output, dimana kedua terminal output tersebut memiliki resistansi yang dapat berubah sesuai dengan intensitas cahaya yang diterimanya. Dimana nilai resistansi kedua terminal output LDR akan semakin rendah apabila intensitas cahya yang diterima oleh LDR semakin tinggi.

Photo Transistor

PhototransistorPhoto transistor
Photo transistor adalah suatu transistor yang memiliki resistansi antara kaki kolektor dan emitor dapat berubah sesuai intensitas cahaya yang diterimanya. Photo transistormemiliki 2 terminal output dengan nama emitor dan colektor, dimana nilai resistansi emeitor dan kolektro tersebut akan semakin rendah apabila intensitas cahaya yang diterim photo transistor semnakin tinggi.

Photo Dioda

PhotodiodaPhoto dioda
Photo dioda adalah suatu dioda yang akan mengalami perubahan resistansi pada terminal anoda dan katoda apabila terken cahaya. Nilai resistansi anoda dan katoda pada photo dioda akan semakin rendah apabila intensitas cahaya yang diterima photodioda semkin tinggi.

Sensor Cahaya Infra Merah

Sensor cahaya infra merah adalah sensor cahaya yang hanya akan merespon perubahan cahaya inframerah. Sensor cahaya infra merah pada umumnya berupa photo ttransistor atau photo dioda. Dimana apabila sensor cahaya infra merah ini menerima pancaran cahaya infra merah maka pada terminal outputnya akan memberikan perubahan resistansi. Akan tetapi ada juga sensor cahaya yang telah dibuat dalam bentuk chip IC penerima sensor infra merah seperti yang digunakan pada penerima remote televisi. Dimana chip IC sensor infra merah ini akan memberikan perubahan tegangan output apabila IC sensor infra merah ini menerima pancaran cahaya infra merah. Berikut adalah bentuk dari IC sensor infra merah tersebut.

IC sensor Infra MerahSensor Cahaya Ultraviolet

Sensor cahaya ultraviolet merupakan sensor cahaya yang hanya merespon perubahan intensitas cahaya ultraviolet yang mengenainya. Seonsor cahaya ultraviolet ini akan memberikan perubahan besaran listrik pada terminal outputnya pada saat menerima perubahan intensitas pancaran cahaya ultraviolet. Sensor cahaya yang populer salah satunya UVtron. Modul sensor cahaya UVtron akan memberikan perubahan tegangan output pada saat sensor UVtron menerima perubahan intensitas cahaya ultraviolet. Berikut adalah bentuk modul sensor cahaya UVtron.
Sensor Cahaya Ultraviolet UVtronModul sensor cahaya ultraviolet UVtron

Sensor Cahaya yang Terinspirasi dari Tumbuhan


Ketika kamu mengamati lampu penerangan jalan, beberapa lampu penerangan jalan tersebut ada yang dapat menyala sendiri ketika
menjelang malam dan mati sendiri saat menjelang pagi tanpa harus dinyalakan dan dimatikan secara manual. Bagaimana hal tersebut
dapat terjadi? Lampu penerangan jalan tersebut mampu menyala dan mati secara otomatis karena dilengkapi dengan sensor cahaya yang
disebut fotoresistor atau light-dependent resistor LDR dan sakelar pengatur on dan
of. Fotoresistor ini mampu mendeteksi ada dan tidak adanya cahaya di lingkungan sekitar. Fotoresistor ini merupakan
resistor atau hambatan listrik yang dapat diubah nilai hambatannya melalui penyinaran cahaya. Hambatan listrik dari fotoresistor ini akan
berkurang jika terkena cahaya, dengan kata lain jika terdapat cahaya alat ini mampu menghantarkan listrik. Perhatikan Gambar 3.30
Light-dependent resistor LDR Lampu jalanan
Sumber: Dok. Kemdikbud
Gambar 3.30 Lampu Jalanan dan Sensor Cahaya light-dependent resistor
Saat menjelang pagi, sinar matahari akan mengenai fotoresistor. Menyebabkan listrik mengalir menuju sakelar. Aktifnya sakelar
ini malah akan mematikan aliran listrik utama, sehingga lampu penerangan jalan menjadi mati. Saat menjelang malam, aliran listrik
tidak dapat mengalir melalui fotoresistor ini sehingga tidak ada aliran listrik yang mengalir menuju sakelar. Akibatnya sakelar berada dalam
kondisi on sehingga lampu penerangan menyala.
Tahukah kamu bahwa mekanisme pada lampu penerangan tersebut juga terinspirasi oleh mekanisme yang terjadi pada tumbuhan? Kamu
tentu tahu tanaman kaktus bukan? Tanaman kaktus hidup di daerah gurun yang kering. Tumbuhan kaktus memiliki stomata yang unik.
140
Kelas VIII SMPMTs Semester 1
Stomata kaktus akan membuka saat malam hari dan akan tertutup saat siang hari untuk mengurangi penguapan air. Proses membuka
dan menutupnya stomata didukung oleh aktivitas sel penjaga stomata. Sel penjaga ini memiliki reseptor cahaya yang disebut fotoreseptor
yang peka terhadap cahaya. Saat siang hari yang terik fotoreseptor pada sel penjaga akan menangkap cahaya dan menyebabkan air dalam
sel penjaga dipompa keluar dengan bantuan ion-ion. Akibatnya sel penjaga akan mengecil dan lubang stomata tertutup. Saat malam hari,
air dipompa lagi masuk ke dalam sel penjaga dengan bantuan ion-ion, sehingga sel penjaga menjadi lebih besar, akibatnya stomata menjadi
terbuka. Perhatikan Gambar 3.31

sumber : Google , https://text-id.123dok.com/document/dy4j16v9y-sensor-cahaya-teknologi-yang-terinspirasi-dari-struktur-jaringan.html , http://zonaelektro.net/sensor-cahaya/

Sel surya : Struktur & Cara kerja


Panel Surya terinspiarsi dari reaksi pengubahan energi cahaya menjadi energi kimia



Sel surya : Struktur & Cara kerja

Sel surya atau juga sering disebut fotovoltaik adalah divais yang mampu mengkonversi langsung cahaya matahari menjadi listrik. Sel surya bisa disebut sebagai pemeran utama untuk memaksimalkan potensi sangat besar energi cahaya matahari yang sampai kebumi, walaupun selain dipergunakan untuk menghasilkan listrik, energi dari matahari juga bisa dimaksimalkan energi panasnya melalui sistem solar thermal.
Sel surya dapat dianalogikan sebagai divais dengan dua terminal atau sambungan, dimana saat kondisi gelap atau tidak cukup cahaya berfungsi seperti dioda, dan  saat disinari dengan cahaya matahari dapat menghasilkan tegangan. Ketika disinari, umumnya satu sel surya komersial menghasilkan tegangan dc sebesar 0,5 sampai 1 volt, dan arus short-circuit dalam skala  milliampere per cm2. Besar tegangan dan arus ini tidak cukup untuk berbagai aplikasi, sehingga umumnya sejumlah sel surya disusun secara seri membentuk modul surya. Satu modul surya biasanya terdiri dari 28-36 sel surya, dan total menghasilkan tegangan dc sebesar 12 V dalam kondisi penyinaran standar (Air Mass 1.5). Modul surya tersebut bisa digabungkan secara paralel atau seri untuk memperbesar total tegangan dan arus outputnya sesuai dengan daya yang dibutuhkan untuk aplikasi tertentu. Gambar dibawah menunjukan ilustrasi dari modul surya.
Modul surya biasanya terdiri dari 28-36 sel surya yang dirangkai seri untuk memperbesar total daya output. (Gambar :”The Physics of Solar Cell”, Jenny Nelson)
Struktur Sel Surya
Sesuai dengan perkembangan sains&teknologi, jenis-jenis teknologi sel surya pun berkembang dengan berbagai inovasi. Ada yang disebut sel surya generasi satu, dua, tiga dan empat, dengan struktur atau bagian-bagian penyusun sel yang berbeda pula (Jenis-jenis teknologi surya akan dibahas di tulisan “Sel Surya : Jenis-jenis teknologi”). Dalam tulisan ini akan dibahas struktur dan cara kerja dari sel surya yang umum berada dipasaran saat ini yaitu sel surya berbasis material silikon yang juga secara umum mencakup struktur dan cara kerja sel surya generasi pertama (sel surya silikon) dan kedua (thin film/lapisan tipis).
Struktur dari sel surya komersial yang menggunakan material silikon sebagai semikonduktor. (Gambar:HowStuffWorks)
Gambar diatas  menunjukan ilustrasi sel surya dan juga bagian-bagiannya. Secara umum terdiri dari :
1. Substrat/Metal backing
Substrat adalah material yang menopang seluruh komponen sel surya. Material substrat juga harus mempunyai konduktifitas listrik yang baik karena juga berfungsi sebagai kontak terminal positif sel surya, sehinga umumnya digunakan material metal atau logam seperti aluminium atau molybdenum. Untuk  sel surya dye-sensitized  (DSSC) dan sel surya organik, substrat juga berfungsi sebagai tempat masuknya cahaya sehingga material yang digunakan yaitu material yang konduktif tapi juga transparan sepertii ndium tin oxide (ITO) dan flourine doped tin oxide (FTO).
2. Material semikonduktor
Material semikonduktor merupakan bagian inti dari sel surya yang biasanya mempunyai tebal sampai beberapa ratus mikrometer untuk sel surya generasi pertama (silikon), dan 1-3 mikrometer untuk sel surya lapisan tipis. Material semikonduktor inilah yang berfungsi menyerap cahaya dari sinar matahari. Untuk kasus gambar diatas, semikonduktor yang digunakan adalah material silikon, yang umum diaplikasikan di industri elektronik. Sedangkan untuk sel surya lapisan tipis, material semikonduktor yang umum digunakan dan telah masuk pasaran yaitu contohnya material Cu(In,Ga)(S,Se)(CIGS), CdTe (kadmium telluride), dan amorphous silikon, disamping material-material semikonduktor potensial lain yang dalam sedang dalam penelitian intensif seperti Cu2ZnSn(S,Se)(CZTS) dan Cu2O (copper oxide).
Bagian semikonduktor tersebut terdiri dari junction atau gabungan dari dua material semikonduktor yaitu semikonduktor tipe-p (material-material yang disebutkan diatas) dan  tipe-n (silikon tipe-n, CdS,dll)  yang membentuk p-n junction. P-n junction ini menjadi kunci dari prinsip kerja sel surya. Pengertian semikonduktor tipe-p, tipe-n, dan juga prinsip p-n junction dan sel  surya akan dibahas dibagian “cara kerja sel surya”.
3. Kontak metal / contact grid
Selain substrat sebagai kontak positif, diatas sebagian material semikonduktor biasanya dilapiskan material metal atau material konduktif transparan sebagai kontak negatif.
4.Lapisan antireflektif
Refleksi cahaya harus diminimalisir agar mengoptimalkan cahaya yang terserap oleh semikonduktor. Oleh karena itu biasanya sel surya dilapisi oleh lapisan anti-refleksi. Material anti-refleksi ini adalah lapisan tipis material dengan besar indeks refraktif optik antara semikonduktor dan udara yang menyebabkan cahaya dibelokkan ke arah semikonduktor sehingga meminimumkan cahaya yang dipantulkan kembali.
5.Enkapsulasi / cover glass
Bagian ini berfungsi sebagai enkapsulasi untuk melindungi modul surya dari hujan atau kotoran.
Cara kerja sel surya
Sel surya konvensional bekerja menggunakan prinsip p-n junction, yaitu junction antara semikonduktor tipe-p dan tipe-n. Semikonduktor ini terdiri dari ikatan-ikatan atom yang dimana terdapat elektron sebagai penyusun dasar.  Semikonduktor tipe-n mempunyai kelebihan elektron (muatan negatif)  sedangkan semikonduktor tipe-p mempunyai kelebihan hole (muatan positif) dalam struktur atomnya.  Kondisi kelebihan elektron dan hole tersebut bisa terjadi dengan mendoping material dengan atom dopant. Sebagai contoh untuk mendapatkan material silikon tipe-p, silikon didoping oleh atom boron, sedangkan untuk mendapatkan material silikon tipe-n, silikon didoping oleh atom fosfor. Ilustrasi dibawah menggambarkan junction semikonduktor tipe-p dan tipe-n.
Junction antara semikonduktor tipe-p (kelebihan hole) dan tipe-n (kelebihan elektron). (Gambar : eere.energy.gov)
 Peran dari p-n junction ini adalah untuk membentuk medan listrik sehingga elektron (dan hole) bisa diekstrak oleh material kontak untuk menghasilkan listrik. Ketika semikonduktor tipe-p dan tipe-n terkontak, maka kelebihan elektron akan bergerak dari semikonduktor tipe-n ke tipe-p sehingga membentuk kutub positif pada semikonduktor tipe-n, dan sebaliknya kutub negatif pada  semikonduktor tipe-p. Akibat dari aliran elektron dan hole ini maka terbentuk medan listrik yang mana  ketika cahaya matahari mengenai susuna p-n junction ini maka akan mendorong elektron bergerak dari semikonduktor menuju kontak negatif, yang selanjutnya dimanfaatkan sebagai listrik, dan sebaliknya hole bergerak menuju kontak positif menunggu elektron datang, seperti diilustrasikan pada gambar dibawah.
Ilustrasi cara kerja sel surya dengan prinsip p-n junction. (Gambar : sun-nrg.org)
*Definisi dari istilah-istilah teknis diartikel ini bisa ditemukan di menu “Daftar istilah-istilah”

sumber : Google dan https://teknologisurya.wordpress.com/dasar-teknologi-sel-surya/prinsip-kerja-sel-surya/

STRUKTUR DAN FUNGSI BUAH DAN BIJI

STRUKTUR DAN FUNGSI BUAH DAN BIJI

STRUKTUR DAN FUNGSI  BUAH DAN BIJI 



Pada bunga yang telah mengalami penyerbukan akan diikuti proses pembuatan sehingga terbentuk buah
Gambar: Pada bunga yang telah mengalami penyerbukan akan diikuti proses pembuatan sehingga terbentuk buah

Buah dapat dibedakan menjadi tiga yaitu buah tunggal, agregat, dan majemuk. Buah tunggal yaitu bila buah dibentuk oleh satu bakal buah. Misalnya buah mangga. Buah agregat yaitu bila buah dibentuk oleh banyak bakal buah. Misalnya buah sirsak, arbei, dan srikaya. Sedangkan buah majemuk yaitu bila buah dibentuk oleh banyak bakal buah dari banyak bunga. Misalnya buah nanas, keluih, dan nangka.
Struktur Morfologi dan Anatomi Buah dan Biji Tumbuhan
Pada bunga yang telah mengalami penyerbukan akan diikuti proses pembuatan sehingga terbentuk buah



Buah merupakan organ pada tumbuhan berbunga yang merupakan modifikasi lanjutan bakal buah (ovarium). Buah biasanya membungkus dan melindungi biji. Berdasarkan jenisnya, buah ada dua macam, yaitu buah sejati dan buah semu.
1. Buah sejati, yaitu buah yang terbentuk dari bakal buah.
Contoh buah semu : Mangifera indica, Avocado, Papaya sp, Semangka.
2. Buah semu, yaitu buah yang terbentuk dari bakal buah dan bagian-bagianlain dari bunga.
Contoh buah semu : Anacardium ocidentale, Fragaria vesca, Pyrus malus, Artocarpus integra.

Struktur Buah dan Biji
Struktur Morfologi Buah
1. Buah Sejati
Buah sejati dapat dibedakan menjadi buah sejati tunggal kering, buah sejati tunggal berdaging, buah sejati ganda, dan buah sejati majemuk.

Buah sejati tunggal kering terdiri atas buah padi atau kariopsis, kurung atau akenium, keras atau nut, samara, berbelah atau schizocarp, kendaga atau rhegma, dan buah kotak. Buah kotak meliputi buah bumbung atau follicle, polong atau legume, loment, lobak atau silique, lobak pendek atau siliqle dan buah kotak sejati atau capsule.

Buah sejati tunggal berdaging meliputi buah buni atau berry, mentimun atau pepo, jeruk atau hesperidium, batu atau drupe, dan delima.

Buah sejati ganda disebut juga buah agregat, terdiri atas buah buni majemuk, batu majemuk, dan kurung majemuk

Cara membukanya buah dapat bermacam-macam, ada yang melalui pembukaan satu kampuh, seperti pada buah bumbung, pembukaan dua kampuh pada buah polong, buah lobak, dan lobak pendek. Pada buah lain seperti buah kotak sejati, buah dapat membuka dengan katup atau klep, dengan retak atau celah, gigi-gigi, liang atau pori, dan tutup atau operculum.

Tipe buah dapat menjadi ciri khas untuk familia tertentu, misalnya Leguminosae, anggotanya memiliki tipe buah polong atau legume. Familia Cruciferae umumnya mempunyai tipe buah lobak (silique) atau lobak pendek (siliqle).

2. Buah Semu
Buah semu terjadi dari bakal buah dan bagian-bunga lain. Bagian bunga tersebut bahkan menjadi bagian yang dominan dalam pembentukan buah, sedangkan bakal buahnya sendiri kurang berkembang. Contoh bagian tersebut, misalnya tangkai bunga, kelopak, tenda bunga, dasar bunga, dan dasar bunga bersama. Bagian tersebut sering kali dapat dimakan

Buah semu dapat digolongkan menjadi buah semu tunggal, semu ganda, semu majemuk, sorosis, dan syconous. Buah semu tunggal berasal dari satu bunga yang mempunyai satu bakal buah. Buah semu ganda berkembang dari satu bunga yang mempunyai banyak bakal buah bebas. Buah semu majemuk berasal dari bunga majemuk, kemudian berkembang menjadi buah. Buah tersebut umumnya terlihat sebagai satu buah karena masing-masing buah berkumpul menjadi satu.

Beberapa contoh buah semu, misalnya jambu mete, ciplukan, dan apel. Ketiganya termasuk buah semu tunggal. Contoh buah semu ganda, misalnya strawberi, buah semu majemuk contohnya nangka, sorosis contohnya mengkudu, dan buah syconous contohnya adalah Ficus.

Struktur Anatomi Buah
Pada umumnya buah berkembang dari bagian alat kelamin betina (putik) yang disebut bakal buah yang mengandung bakal biji. Buah yang lengkap tersusun atas biji, daging buah, dan kulit buah. Kulit buah yang masih mudah belum mengalami pemisahan jaringan. Setelah masak, kulit buah ada yang dapat dibedakan menjadi tiga lapisan, yaitu epikarp, mesokarp, dan endokarp.
1. Epikarp merupakan lapisan luar yang keras dan tidak tembus air, misalnya buah kelapa.
2.Mesokarp merupakan lapisan yang tebal dan berserabut, misalnya bersabut (kelapa), berdaging (mangga dan pepaya).
3. Endokarp merupakan lapisan paling dalam yang tersusun atas lapisan sel yang sangat keras dan tebal, misalnya tempurung (kelapa), berupa selaput tipis (rambutan).

Struktur Morfologi Biji
Biji merupakan struktur yang efisien untuk perkembangbiakan dan perbanyakan. Biji berasal dari bakal biji yang berkembang setelah mengalami pembuahan.

Ada beberapa macam tipe bakal biji, yaitu orthotropous bila mikropil terletak di bagian atas, sedangkan hilumnya di bagian bawah; amphitropous, yaitu bakal biji yang tangkai bijinya membengkok sehingga ujung bakal biji dan tangkai dasarnya berdekatan satu sama lain. Anatropous, yaitu bakal biji yang mempunyai mikropil membengkok sekitar 180o, dan campylotropous, yaitu bakal biji yang membengkok 90o sehingga tali pusar tampak melekat pada bagian samping bakal biji.

Biji mempunyai bentuk yang bermacam-macam, misalnya menyudut, ginjal, bulat, memanjang, bulat telur dan lain-lain. Bentuk biji yang unik dijumpai pada genjer yang mempunyai biji, seperti ladam, dan senggani yang mempunyai bentuk biji, seperti rumah siput.

Permukaan kulit luar biji bermacam-macam, ada yang halus, kasar, berkutil, berduri dan sebagainya. Ini dapat dijumpai pada tumbuh-tumbuhan yang tergolong gulma.

Bagian-bagian biji terdiri atas
- Kulit biji (Spermadermis), Kulit biji pada tumbuhan ada yang terdiri atas dua lapis, ada juga yang tiga lapis.
- Inti biji (Nucleus seminis), Inti biji terdiri atas embrio dan cadangan makanan.
- Tali pusat (Funiculus), Tali pusar merupakan bagian yang menghubungkan biji dengan plasenta.

Pada kulit biji dapat dijumpai bagian-bagian, seperti sayap, bulu, salut biji, pusar biji, liang biji, berkas pembuluh pengangkut, tulang biji, carunle, dan strophiole.

Struktur Anatomi Biji
1. Kotiledon, cadangan makanan embrio
2. Plumula, berdeferensiasi menjadi bakal daun
3. Radikula, bakal calon akar
4. Epikotil, bakal batang yang berada di atas kotiledon
5. Hipokoti, bakal batang yang berada di bawah kotledon
6. Skutelum, permukaan keras
7. Testa, pelindung biji

Macam-macam Bentuk Buah

Berdasarkan asal terbentuknya buah dibedakan menjadi:
  1. Buah sejati, yaitu jika buah berasal dari bakal buah. Contoh: buah mangga, pepaya, rambutan, dan lain-lain.
  2. Buah tidak sejati (semu), yaitu buah yang dibentuk dari selain bakal buah, misalnya dari kelopak bunga tangkai bunga, atau daun bunga yang berubah menjadi buah.

Contoh:
a) Jambu mete, buah berasal dari tangkai yang dipakai untuk menyimpan makanan.
b) Nangka, buah berasal dari daun bunga yang dipakai untuk menyimpan makanan.
c) Ciplukan, buah berasal dari kelopak yang dipakai untuk menyimpan makanan.
d) Nanas, buah berasal dari daun bunga.
e) Apel, buah berasal dari dasar bunga yang membesar.


Fungsi Buah dan Biji
Fungsi buah : 
- sebagai cadangan makanan
- alat perkembangbiakan
- dimanfaatkan manusia
- sebagai pelindung biji
Fungsi biji :
- hasil pembuahan / penyerbukan bunga
- alat perkembangbiakan
- dimanfaatkan manusia
sumber : http://sofiachyn27.blogspot.com/2017/10/struktur-dan-fungsi-buah-dan-biji.html
 
Copyright © 2010 Arietago1245 | Design : Noyod.Com | Images : Red_Priest_Usada, flashouille