Senin, 25 Maret 2019

Mekanisme Pendengaran pada Telinga Manusia dan Perancangan Akustik Ruang

Mekanisme Pendengaran pada Telinga Manusia dan Perancangan Akustik Ruang

A. Telinga manusia

Telinga merupakan salah satu organ tubuh yang dimiliki oleh manusia yang berfungsi sebagai indera pendengaran yang menerima dan menginterpreta-sikan gelombang suara yang diterima, juga untuk menjaga keseimbangan. Telinga memiliki reseptor khusus yang berfungsi untuk mengenali geetaran suara dengan batas frekuensi yang dapat didengar, yaitu pada frekuensi 20–20k Hz.
1. Bagian-bagian telinga manusia
Berdasarkan letaknya, telinga manusia dibedakan menjadi tiga bagian, yaitu telinga luar, tengah, dan dalam. Setiap bagian telinga tersebut memiliki tugas dan fungsi masing-masing. Jika salah satu dari bagian telinga memiliki gang-guan, maka akan mempengaruhi proses pendengaran secara keseluruhan.


Gambar 1. Bagian-bagian telinga manusia

a. Telinga luar
Telinga luar berfungsi sebagai penangkap getaran bunyi dari luar. Bagian telinga luar terdiri dari daun telinga (pinna) dan liang telinga. Daun telinga berfungsi sebagai penangkap dan pengumpul getaran suara. Liang telinga atau saluran telinga berfungsi untuk menjaga agar tidak ada benda asing masing kedalam. Pada dinding saluran telinga luar dihasilkan minyak serumen.
b. Telinga tengah
Telinga tengah merupakan rongga yang berisi udara dan berfungsi menjaga tekanan udara agar tetap seimbang. Bagian telinga tengah terdiri dari gen-dang telinga (tymphanic membrane) dan tiga tulang pendengaran (malleus, inkus, stapes). Gendang telinga berfungsi sebagai penghubung antara telinga luar dan telinga tengah. Gendang telinga bergetar dengan cepat dalam mene-rima gelombang suara dan mengubah energi suara menjadi energi mekanik. Tulang pendengaran saling terhubung satu sama lain dan berfungsi untuk mengirimkan getaran yang diterima gendang telinga menuju telinga dalam.


Gambar 2. Organ Telinga Tengah Manusia

c. Telinga dalam
Telinga dalam terdiri atas bagian tulang dan bagian membran. Bagian telinga dalam terdiri dari koklea (rumah siput). Didalam koklea terdapat organ korti yang merupakan organ pendengaran. Didalam organ korti terdapat sel-sel rambut sensori yang merupakan reseptor getaran.
2. Mekanisme sistem pendengaran manusia
Proses mendengar diawali dengan gelombang suara masuk melalui telinga luar (daun telinga). Kemudian gelombang suara memasuki rongga telinga dan mengalami amplifikasi melalui proses resonansi. Selanjutnya gelombang suara akan menuju membran timpani. Di membran timpani, gelombang suara diubah menjadi getaran. Getaran tersebut akan menyebabkan tiga tulang pendengaran ikut bergetar untuk mengubah tekanan suara menjadi energi mekanik. Dalam proses ini terjadi penyamaan impedansi antara telinga luar dan telinga bagian tengah. Kemudian getaran diteruskan ke koklea, dimana pada koklea terdapat cairan yang akan ikut bergetar. Akibat getaran tersebut, cairan akan bergerak dan merangsang sel-sel rambut pada organ korti yang terdapat di koklea. Getaran tersebut kemudian akan dikirimkan melalui saraf sensoris menuju otak dalam bentuk impuls. Otak menerima impuls dan me-nerjemahkannya sebagai suara.
Manusia dapat melakukan persepsi terhadap gelombang akustik yang dite-rima. Persepsi tersebut terbagi dua, yaitu Interaural Time Difference (ITD) dan Interaural Intensity Difference (IID).
a. Interaural Time Difference (ITD), merupakan perbedaan waktu saat gelombang suara sampai pada kedua teli-nga. Kedua telinga dipisahkan oleh jarak 18 cm sehingga menyebabkan terja-dinya perbedaan waktu tersebut. Telinga yang lebih dekat dengan sumber su-ara akan lebih cepat menerima gelombang suara dibandingkan telinga yang lain.
b. Interaural Intensity Difference (IID), menunjukkan bahwa posisi telinga yang lebih dekat dengan sumber suara akan menerima intensitas suara yang lebih tinggi dibandingkan telinga yang lain.
3. Memperbaiki fungsi pendengaran
Gangguan pendengaran pada manusia dapat bersifat sementara dan perma-nen. Gangguan pendengaran sementara (temporary threshold shift) terjadi karena kenaikan nilai ambang pendengaran secara sementara setelah adanya bising dan bersifat reversible. Hal ini dapat terjadi karena level suara, durasi pajanan, frekuensi yang diuji, usia, jenis kelamin, dll. Umumnya akan hilang setelah pemulihan ambang dengar selama 1–7 hari. Gangguan pendengaran permanen (permanent threshold shift) terjadi ketika seseorang telah mende-ngar bising berlebih dalam jangka waktu yang lama, sehingga mengalami ke-hilangan pendengaran yang bersifat permanen dan tidak dapat disembuh-kan (irreversible).
Gangguan pendengaran dapat ditanggulangi dengan alat bantu dengar tuli. Alat bantu dengar sendiri terdiri dari sebuah mikrofon untuk menangkap su-ara, amplifier untuk meningkatkan volume suara, speaker untuk menghantar-kan suara yang volumenya telah dinaikkan. Selain itu dapat juga mengguna-kan pencangkokan koklea (implant koklea). Implant koklea dilakukan pada penderita tuli berat yang tidak dapat mendengar meskipun telah mengguna-kan alat bantu dengar. Alat ini dicangkokan dibawah kulit di belakang teli-nga. Alat ini terdiri dari sebuah mikrofon untuk menangkap suara sekitar, prosesor percakapan untuk memilih dan mengubah suara yang tertangkap mikrofon, sebuah transmitter dan stimulator/penerima untuk menerima si-nyal dari prosesor percakapan dan merubahnya menjadi gelombang listrik, dan elektroda untuk mengumpulkan gelombang dari stimulator dan mengi-rimnya ke otak.


Gambar 3. Implant Koklea

B. Material akustik

1. Jenis-jenis material akustik absorber
Jenis-jenis material akustik absorber (penyerap suara) dapat dibedakan men-jadi empat, yaitu bahan porous, panel absorpsi, resonator, dan manusia (pakaian) juga benda di sekeliling ruangan.
a. Bahan porous, adalah bahan yang menyerap energi suara dengan mengu-bah energi suara menjadi energi panas dalam pori-pori lalu diserap. Contoh bahan porous antara lain busa, karpet, gorden, glasswool. Absoptivitas me-ningkat seiring dengan bertambahnya ketebalan material. Penyerapan pada frekuensi rendah dapat ditingkatkan dengan memasang material jauh dari dinding.
b. Panel absorpsi, terdiri dari tiga macam, yaitu:
• Panel langsung menempel pada tembok. Absorpsi nya kecil baik pada frekuensi tinggi maupun rendah
• Rongga antara panel dan tembok kosong. Dengan adanya rongga, karakte-ristik absorpsi berubah. Pada frekuensi rendah, koefisien absorpsi lebih besar daripada saat frekuensi tinggi
• Rongga antara panel dan tembok diisi glasswool. Pada frekuensi rendah, koefisien absorpsi semakin besar
c. Resonator
Resonator menyerap energi bunyi paling efisien dalam pita frekuensi sempit dekat resonansi. Peredaman berada dalam pita frekuensi sempit di dekat resonansi.
d. Manusia, pakaian, atau benda di sekeliling ruangan
Untuk faktor-faktor seperti manusia, pakaian, atau benda-benda di sekeliling ruangan, dapat dilihat dari koefisien absorpsi nya.
2. Contoh aplikasi rekayasa material akustik
Dalam merancang suatu auditorium, terdapat beberapa syarat kondisi akus-tik, yaitu:
a. Tingkat tekanan suara cukup untuk semua tempat di dalam ruangan dan merata.
b. Waktu dengung optimal sesuai fungsi dan volume ruangan
c. Bebas dari cacat akustik (echo, konsentrasi suara, bayangan suara)
d. Bebas dari bising yang mengganggu dari luar maupun dari dalam ruangan
e. Jarak ke sumber suara sedekat mungkin
f. Letakkan sumber suara lebih tinggi dari audiens
g. Lantai meninggi pada bagian belakang
h. Sumber suara dikelilingi permukaan pantul
i. Langit-langit memiliki bentuk yang memantulkan ke seluruh audiens (memiliki sudut tertentu)
Untuk merekayasa material akustik, dapat dilakukan dengan mengubah ma-terial menjadi absorber atau reflektor sesuai fungsinya. Untuk kasus peman-tulan energi suara yang berlebihan sehingga mengganggu kejelasan suara ucapan, maka perlu dilakukan penggantian material akustik reflektor yang berlebihan menjadi absorber atau penambahan material absorber. Selain itu, pemantulan energi suara yang berlebihan dapat disebabkan karena terdapat cacat akustik.
Agar suara yang sampai ke audiens terdengar jelas, dapat dilakukan dengan membuat dinding di daerah panggung/sumber suara berbahan reflektor. Se-lain itu, langit-langit dibuat berbahan reflektor dengan sudut tertentu untuk merefleksikan gelombang suara dari sumber ke audiens secara merata. Pele-takkan kursi audiens dibuat berundak agar suara sampai ke audiens tidak ter-halang oleh audiens di depannya. Pada bagian dinding digunakan bahan re-flektor dan absorber agar suara yang datang dapat dipantulkan menuju au-diens, tetapi tidak dengan energi yang berlebihan. Lantai dan kursi audiens dibuat berbahan absorber agar suara dapat diserap.
Cacat akustik juga dapat mempengaruhi pemantulan energi suara yang berle-bihan. Untuk menanggulangi hal tersebut dapat dilakukan dengan membuat dinding tidak merata agar pantulan suara tersebar, dan pada dinding bagian belakang dibuat berbahan absorber.

C. Coincidence effect

Coincidence effect adalah efek yang disebabkan oleh frekuensi tinggi. Gelom-bang yang memiliki frekuensi tinggi menyebabkan gelombang berjalan longi-tudinal disepanjang dinding.


Gambar 4. Coincidence Effect

D. Karakteristik transmission loss

Berdasarkan frekuensi kerja, karakteristik transmission loss dapat dibagi menjadi tiga, yaitu stiffness control, mass control, dan damping control region.


Gambar 5. Karakteristik Transmission Loss

1. Stiffness control region, yaitu karakteristik transmisi suara yang disebabkan karena adanya kekakuan material. Stiffness control terjadi untuk transmisi panel pada frekuensi yang rendah. Pada stiffness control region, suara akan mengalami penurunan sebesar 6 dB untuk setiap satu oktaf.
2. Damping control region, yaitu karakteristik transmisi suara yang dipengaruhi oleh coincidence effectDamping control terjadi untuk transmisi panel pada frekuensi kritis.
3. Mass control region, yaitu karakteristik transmisi suara yang dipengaruhi oleh massa dari material. Mass control terjadi untuk transmisi panel pada frekuensi diatas frekuensi resonansi terendah. Pada mass control region, suara akan mengalami peningkatan sebesar 6 dB untuk setiap satu oktaf.
Berdasarkan konsep tentang karakteristik transmission loss diatas, kita dapat melakukan perancangan selubung ruangan. Untuk ruangan yang digunakan untuk kegiatan musik, dibutuhkan dominasi energi suara berfrekuensi ren-dah sehingga suara dari dalam ruangan tidak mengganggu dan terganggu daerah luar ruangan. Perancangan selubung dapat dilakukan dengan meng-gunakan material reflektor secara optimal agar suara yang terdengar sama pada semua tempat di dalam ruangan. Untuk menanggulangi kelebihan ener-gi pemantulan, dapat digunakan bahan absorber yang banyak untuk mence-gah suara yang berlebihan sehingga dapat diredam. Hal ini bertujuan agar suara musik yang berada di dalam ruangan terdengar merata ke seluruh rua-ngan dan tidak mengganggu dan terganggu oleh keadaan luar ruangan, sama halnya seperti perancangan auditorium.
Untuk ruangan yang digunakan untuk kegiatan percakapan, dominasi energi yang dibutuhkan tidak pada frekuensi serendah untuk ruangan musik. Pada ruangan ini diperlukan material reflektor pada dinding depan, dinding sam-ping, dan lanngit-langit depan. Pada dinding belakang, langit-langit bela-kang, dan lantai dapat menggunakan bahan absorber.
SUMBER
Kinsler, Lawrence E., dkk. 2000. Fundamentals of Acoustics 4th Edition. New York: John Wiley & Sons.
Ih, Jeong-Guon. 2018. Sound Reflection and Transmission at Discontinuities. Bandung. Institut Teknologi Bandung.
http://budisma.net/2015/05/fungsi-bagian-bagian-telinga-manusia.html
http://www.softilmu.com/2015/04/Pengertian-Bagian-Bagian-Telinga-Fungsi-adalah.html

sumber : https://medium.com/@lauditant/mekanisme-pendengaran-pada-telinga-manusia-dan-perancangan-akustik-ruang-38ef8be8591d

Getaran

Getaran
Getaran adalah gerak bolak-balik benda melalui titik kesetimbangannya.

 Perhatikanlah gambar di samping :
Bila gerakan dimulai dari A maka satu getaran menempuh lintasan A-B-C-B-A

Bila gerakan dimulai dari B maka satu getaran dapat diawali dengan gerakan ke kanan atau ke kiri (bebas) :
ke Kiri  lintasannya B-A-B-C-B dan ke kanan lintasannya B-C-B-A-B
Kalau C maka satu getarannya dengan mudah dapat ditentukan bukan ?

1. Amplitudo

Amplitudo didefinisikan sebagai simpangan getaran paling besar. dalam gambar di atas titik seimbangnya adalah B berarti amplitudo (simpangan maksimum)nya adalah BA dan BC. Dalam gelombang bunyi amplitudo mempengaruhi kuat lemahnya bunyi.

2. Periode dan Frekuensi

Periode ( T ) adalah waktu yang diperlukan untuk melakukan satu kali getaran
Frekuensi ( f ) adalah banyaknya getaran tiap satuan waktu (sekon). Frekuensi mempengaruhi tinggi rendah bunyi.

keterangan : n = banyaknya getaran/elombang
                         t = waktu (s)



bila kalian perhatikan antara rumus periode ( T ) dan frekuensi ( f ) saling berkebalikan....jadi hubungan antara periode dan frekuensi dapat ditulis :







sumber : https://mediabelajaronline.blogspot.com/2010/03/getaran-gelombang-dan-bunyi-untuk-smp.html 

Gelombang

Gelombang
Gelombang adalah geteran yang berjalan.
Berdasarkan kebutuhan medium (tempat) perambatannya dibedakan menjadi 2 yakni :

  • Gelombang mekanik, adalah gelombang yang memerlukan medium untuk perambatannya. mediumnya dapat berupa udara, zat cair maupun zat padat. dan tidak dapat melalui ruang hampa.
  • Gelombang Elektromagnetik, adalah gelombang yang tidak memerlukan medium untuk perambatannya, berarti gelombang elektromagnetik dapat melalui ruang hampa. Contohnya gelombang cahaya.

C. Gelombang Mekanik
gelomnag mekanik dibagi menjadi dua macam yakni gelombang tranversal dan gelombang longitudinal.

Gelombang Tranversal
adalah gelombang mekanik yang arah perambatannya tegak lurus terhadap arah getarannya.

Perhatikan gambar di samping  :

gelombang merambat dari kiri kekanan sedangkan arah getarannya naik turun.
contoh gelombang tranversal :
gelombang tali, gelombang air  dll.





Hal2 yang perlu diperhatikan dalam gelombang tranversal ini :

  • ABC, EFG, dan IJK = bukit gelombang
  • CDE dan GHI = lembah gelombang
  • B, F, dan J = titik puncak gelombang
  • D dan H = titik dasar gelombang
  • ABCDE, EFGHI = satu gelombang
Satu gelombang terdiri atas satu puncak gelombang dan satu lembah gelombang. Jadi, gelombang transversal pada Gambar di atas terdiri atas 3 puncak gelombang dan 2 lembah gelombang. Dengan kata lain terdiri atas 2,5 gelombang.

Gelombang Longitudinal  









adalah gelombang mekanik yang arah perambatannya sejajar terhadap arah getarannya.
Contohnya gelombang bunyi.

D. Cepat Rambat dan Panjang Gelombang

 v = cepat rambat gelombang bunyi (m/s)
 s = jarak yang ditempuh (m)
 t = waktu tempuh (s).





berarti rumus kecepatan ada tiga macam dan penggunaanya tergantung dengan apa yang diketahui dalam soal. misal diketahui jarak tempuh (s) dan waktunya (t) maka menggunakan rumus v = s/t .

conoh soal :
diketahui sebuah gelombang seperti pada gambar  jika jarak tempuh = 10 m
a. berapa Amplitudonya?
b. berapa frekuensi dan periodenya ?
c. berapa panjang gelombangnya ?
d. berapa kecepatannya ?


a. Ampitudo (A) nya = 5 cm
b. frekuensi (f) = banyak gelombang/waktu = 2,5/1 = 2,5 Hz
    Periode (T) = waktu/banyak gelombang = 1/2,5 = 0,4 sekon
c. panjang gelombang = jarak tempuh/banyak gelombang = 10/2,5 =  4 m
d. karena yang dikethui dalam soal cukup banyak untuk mencari kecepatan dapat menggunakan 2 cara :
     cara I : kecepatan (v) = jaraktempuh (s) / waktu tempuh (t) = 10 / 1 = 10 m/s
    cara II : kecepatan(v) = panjang gelombang x frekuensi (f) = 4 x 2,5 = 10 m/s


sumber : https://mediabelajaronline.blogspot.com/2010/03/getaran-gelombang-dan-bunyi-untuk-smp.html

Gelombang Bunyi

Gelombang Bunyi

seperti yang telah dikemukakan sebelumnya, bunyi merupakan bentuk dari gelombang tranversal (arah rambatan sejajar dengan arah getarannya). kuat lemah bunyi dipengaruhi Amplitudo dan tinggi rendah bunyi dipengaruhi oleh frekuensi

Nada adalah bunyi yang teratur
Desah adalah bunyi yang tidak teratur
Timbre adalah warna bunyi

Resonansi adalah peristiwa ikut bergetarnya benda lain yang berfrekuensi sama dengan sebuah benda yang bergetar. contoh pantulan bunyi dalam kotak udara gitar mempunyai frekuensi yang sama....maka terjadi resonansi dan bunyi gitar menjadi lebih nyaring dari bunyi aslinya (petikan senar saja).
contoh lain resonansi :

ketika sebuah bandul digoyang maka bandul lain yang tidak digoyang namun memiliki panjang yang sama akan secara alami ikut bergoyang...hal ini karena bandul yang mempunyai panjang tali yang sama juga mempunyai frekuensi yang sama juga....sehingga terjadi resonansi




Hukum Marsenne
Marsenne menyelidiki hubungan frekuensi yang dihasilkan oleh senar yang bergetar dengan panjang senar, penampang senar, tegangan, dan jenis senar. Faktor-faktor yang memengaruhi frekuensi nada alamiah sebuah senar atau dawai menurut Marsenne adalah sebagai berikut :

1) Panjang senar, semakin panjang senar semakin rendah frekuensi yang dihasilkan.
2) Luas penampang, semakin besar luas penampang senar, semakin rendah frekuensi yang dihasilkan.
3) Tegangan senar, semakin besar tegangan senar semakin tinggi frekuensi yang dihasilkan.
4) Massa jenis senar, semakin kecil massa jenis senar semakin tinggi frekuensi yang dihasilkan.
Pengelompokan bunyi berdasarkan frekuensinya :

1. Bunyi Infrasonik adalah bunyi yang frekuensinya < 20 Hz. bunyi ini tidak dapat didengarkan oleh manusia namun dapat didengarkan oleh laba-laba, jangkrik dan lumba-lumba.

2. Bunyi audiosonik adalah bunyi yang frekuensinya diantara  20 Hz - 20.000 Hz. bunyi jenis inilah yang dapat didengarkan oleh manusia.

3. Bunyi ultrasonik adalah bunyi yang frekuensinya  > 20.000 Hz. bunyi jenis ini juga tidak dapat di dengarkan manusia. hewan yang mampu mengarkan bunyi jenis ini adalan lumba2, jangkrik, anjing....dll

Pemantulan Bunyi

Jenis pemantulan bumi ada 2 yakni :
1. Gaung, adalah bunyi pantul yang sebagian terdengar bersamaan dengan bunti aslinya. Hal ini menyebabkan bunyi asli terdengar kurang jelas.

Contoh
Bunyi asli           : mer - de - ka
Bunyi pantul     :          mer - de - ka

mperistiwa seperti ini dapat terjadi dalam sebuah gedung yang tidak ada peredam suaranya. untuk mengurangi atau menghilangkan gaung diperlukan bahan peredam suara seperti : gabus, kapas, wool, kardus dll.

2. Gema, adalah bunyi pantul yang terdengar setelah bunyi asli selesai. hal ini terjadi karena dinding pantulnya mempunyai jarak yang jauh. misalnya pada suatu lembah atau gunung.
Contoh
Bunyi asli           : mer - de - ka
Bunyi pantul     :                             mer - de - ka

Perhitungan Jarak Sumber Bunyi dengan Bidang Pantul

karena lintasan bunyi pantul merupakan gerak bolak balik maka jarak sumber dengan bidang pantul sama dengan separuhnya

s = jarak tempuh gelombang bunyi (m)
v = cepat rambat gelombang bunyi (m/s)
t = waktu tempuh gelombang bunyi (t)


 Contoh :
Diketahui cepat rambat gelombang bunyi di udara adalah 340 m/s. Sebuah kapal memancarkan bunyi sonar ke dasar laut. Jika 4 sekon kemudian orang di dalam kapal dapat mendengarkan bunyi pantulannya. Hitung kedalaman laut tersebut...?

t   = 4 s
v  = 340 m/s
s  = (v x t) / 2 = (340 x 4) / 2 = 680 m





sumber : https://mediabelajaronline.blogspot.com/2010/03/getaran-gelombang-dan-bunyi-untuk-smp.html

Pengertian Getaran Dan Contoh Getaran Dalam Kehidupan Sehari-Hari

Pengertian Getaran Dan Contoh Getaran Dalam Kehidupan Sehari-Hari

Pembahasan berikut ini adalah penjelasan lengkap tentang getaran, pengertian getaran, contoh getaran, getaran pegas, getaran harmonik, getaran mekanik, getaras mekanis, getaran harmonis, getaran selaras, makalah getaran, amplitudo getaran, contoh getaran dalam kehidupan sehari-hari, getaran gelombang bunyi dan getaran fisika serta pengertian getaran harmonik dan pengertian getaras harmonis.

Tahukah kamu, jam mekanik ada yang digerakkan oleh bandul? Bandul pada jam bergerak secara teratur dan terus-menerus. Simpangan bandul ketika bergerak ke kiri sama dengan simpangannya ketika bergerak ke kanan. Itu dikatakan bahwa bandul bergetar. Apakah getaran itu? Apakah dalam waktu yang sama bandul bergerak dengan jumlah yang sama?

Pengertian dan Definisi getaran

Gerak dapat berulang dan tiap ulangan gerak dapat ditempuh dalam waktu yang sama. Gerak seperti ini biasanya disebut gerak periodik. Jika suatu benda dalam gerak periodik bergerak bolak-balik melalui lintasan yang sama maka disebut getaran.

Amati gambar berikut ini.
Pengertian Getaran Dan Contoh Getaran Dalam Kehidupan Sehari-Hari
Gambar: Getaran Bolak-balik

Pada saat digetarkan, ujung penggaris akan melalui lintasan O – A – O – B – O secara berulang-ulang. Gerakan suatu benda di sekitar titik keseimbangannya pada lintasan tetap disebut getaran.

Benda dikatakan melakukan satu getaran jika bergerak bolak-balik satu kali penuh. Jadi, satu getaran adalah gerak dari O – A – O – B – O atau A– O – B – O – A atau B – O – A – O – B.

Benda yang diam dapat dikatakan berada pada titik keseimbangannya. Manakah titik keseimbangan untuk benda pada gambar berikut?
Pengertian Getaran Dan Contoh Getaran Dalam Kehidupan Sehari-Hari
Gambar: Titik Keseimbangan

Jarak antara benda dengan titik keseimbangannya disebut simpangan. Simpangan terbesar suatu benda yang bergetar disebut amplitudo.

Frekuensi dan periode getaran

Misalkan dalam 5 sekon terjadi 20 getaran ujung penggaris plastik maka dapat dikatakan bahwa dalam 1 sekon terjadi 4 getaran ujung penggaris plastik. Jumlah getaran yang terjadi dalam satu sekon ini disebut frekuensi getaran yang dapat dirumuskan sebagai berikut.
 F = N : t
Keterangan:
f = frekuensi (Hz)
N = jumlah getaran
t = waktu (s)

Dalam SI, satuan frekuensi dinyatakan dalam Hertz (Hz). Satuan yang lebih besar adalah kiloHertz (kHz), megaHertz (MHz), atau gigaHertz (GHz). Satuan yang lain adalah cycle per second (cps), 1 cps = 1 Hz.

Dalam tiap satuan waktu akan terjadi sejumlah getaran. Waktu yang dibutuhkan untuk membuat satu getaran ini disebut periode. Hubungan antara periode dan frekuensi dapat ditulis sebagai berikut.
 T = 1/f detik atau f = 1/T Hz
Keterangan:
T = periode (s)
f = frekuensi (Hz)

Contoh Soal tentang Getaran

Benda bergerak dalam waktu 2 menit membuat 6.000 getaran. Berapa frekuensi dan periodenya?

Pembahasan

Diketahui:
t = 2 menit = 120 detik
Ī£getaran = N = 6.000 getaran

Ditanya:
f dan T = ...?

Jawab:
F = N : t
   = 6.000 : 120 = 50 Hz

T = 1/f
   = 1 : 50 = 0,02 detik

Jadi, frekuensi getarannya 50 Hz dan periodenya 0,02 detik.

Ayunan sederhana

Mari kita lakukan kegiatan berikut ini untuk mengetahui faktor-faktor yang memengaruhi frekuensi getaran pada ayunan sederhana.

Besarnya frekuensi getaran bergantung pada panjang benang penggantung bandul. Menurut penyelidikan, frekuensi ayunan dinyatakan sebagai berikut.

Keterangan:
p = 3,14
L = panjang tali (m)
g = percepatan gravitasi (m/s2)

Contoh getaran dalam kehidupan sehari-hari :

a. Getaran senar gitar yang dipetik

b. Getaran pita suara ketika berbicara

c. Getaran permukaan bumi ketika terjadi gempa bumi

d. Bandul jam dinding yang bergoyang-goyang

e. Pegas yang diberi beban

f. Ayunan anak-anak

g. Mainan anak-anak yang berbentuk mistar.

h. Getaran ikan

Getaran Ikan

Tahukah kamu, bagaimana ikan berkomunikasi? Ikan membangkitkan getaran suara dengan menggosok-gosokkan bagian badan tulang dan gigi secara bersamaan untuk berkomunikasi.

Pada sebagian besar ikan, suara yang timbul diakibatkan oleh gelembung renang, yaitu gas berisi gelembung yang menyerupai organ. Dinding elastis gelembung renang dihubungkan ke otot yang dapat memanjang dan berkontraksi untuk meningkatkan dan menurunkan volume gelombang renang.

Getaran ini menggetarkan air di sekitar ikan, merambat keluar sebagai gelombang suara yang dapat didengar sebagai dengkuran, siulan, atau suara drum. Itu semua tergantung pada penggunaan otot.


sumber : https://www.berpendidikan.com/2015/12/pengertian-getaran-dan-contoh-getaran-dalam-kehidupan-sehari-hari.html
 
Copyright © 2010 Arietago1245 | Design : Noyod.Com | Images : Red_Priest_Usada, flashouille